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Abstract 

There is a pressing need for shallow bathymetry in regions around the world, including in fragile marine 
ecosystems, such as coral reefs. Unfortunately, mapping these shallow-water areas using in situ or boat-
based methods is expensive, time consuming, and potentially dangerous, due to the need to put personnel 
and/or boats in high-energy nearshore areas, which may contain rocks, reefs, and other submerged 
hazards. For this reason, passive remote sensing methods of shallow bathymetric mapping have been 
rapidly growing in interest and usage. Two general categories of approaches using passive imaging can be 
distinguished as: 1) those based on geometry (stereo-photogrammetry); 2) those based on radiometry 
(attenuation of light in the water column). These two broad categories of approaches have been tested on 
imagery collected using aircraft and satellites in numerous previous studies. Recent work within the 
geometric category includes processing unmanned aircraft system (UAS) imagery using Structure from 
Motion and Multi-View Stereo (SfM-MVS) photogrammetry, while radiometric methods encompass the 
broad range of spectral bathymetry retrieval algorithms. Each broad approach category has advantages 
and disadvantages. Fortunately, the geometric and radiometric approaches are highly complementary. The 
geometric approaches tend to work best in areas of high bottom texture, which facilitates feature matching 
in the SfM-MVS software. Meanwhile, the radiometric approaches work best in relatively homogeneous 
bottom types. To leverage the strengths of each type of approach and overcome their respective 
weaknesses, this work develops and tests a combined geometric-radiometric bathymetric mapping 
approach designed for shallow-water mapping from UAS imagery. Four radiometric models of varying 
complexity are tested, ranging from a color-based lookup table approach to neural networks. Two UAS 
flights on Buck Island, off St Croix in the U.S. Virgin Islands (USVI), are used to assess the accuracy of 
the methodology when compared to aerial bathymetric lidar data. The results show that the combined 
geometric-radiometric approach provides an increase in spatial coverage of up to 61% and improvement 
(i.e. decrease) in 95th percentile error of up to 49% when compared to traditional refraction-corrected 
SfM-MVS bathymetry.  
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1. Introduction 

There is a persistent need for bathymetric data in shallow coastal regions around the world. These 
bathymetric data are critical in modeling inundation from coastal storms and sea level rise, monitoring 
fragile marine ecosystems (e.g., coral reef habitats), supporting coastal engineering and coastal resilience 
initiatives, and informing coastal management decisions (Miller et al., 2011; Leon et al., 2013; Harris 
1972; Harris 2012). Cost- and time- efficient remote sensing methods of shallow bathymetric mapping are 
of growing interest due to the vastness and, in many cases, remoteness of coastal areas around the globe 
in which shallow bathymetry is entirely lacking, and the immense resources that would be required to 
map them with sonar (Board, 2004; IHO, 2018; Forfinski-Sarkozi and Parrish, 2019). 
 
The ability to estimate bathymetry via spectral characteristics of airborne or satellite imagery is 
documented at least as far back as the 1970s (Lyzenga, 1978), and techniques for bathymetry retrieval 
from imagery have proliferated rapidly with the increasing availability of moderate-resolution satellite 
imagery, such as from Landsat 8 Operational Land Imagery and Sentinel-2 Multispectral Instrument, as 
well as commercial high-resolution satellite imagery (Legleiter et al. 2004, 2009; Lyzenga et al. 2006). 
The techniques for bathymetry retrieval from passive, optical imagery are often broadly referred to as 
spectrally derived bathymetry (SDB). SDB algorithms are highly varied, with some being more theory-
based and others purely empirical. However, a common denominator is that most, if not all, are based on 
the wavelength-dependent exponential attenuation of light in the water column, which is generally 
modeled with the Beer-Lambert Law (Lyzenga 1978, 1981). It is this broad class of algorithms that we 
refer to in this paper as “radiometric” bathymetry retrieval techniques.  
 
Meanwhile, a fundamentally different approach to mapping bathymetry from remotely-sensed imagery is 
based on geometry, rather than radiometry. The origins of this geometric approach lie in 
photobathymetry, which was used first discussed in the 1940s (Rinner, 1948), and implemented in the 
1960s (Tweinkel 1963, Meijer 1964) to map bathymetry from overlapping stereo imagery using 
photogrammetric procedures, modified to account for refraction at the air-water interface (Collins, 1979; 
Brewer, 1979). A much more recent—although not fundamentally dissimilar—geometric approach uses 
structure from motion (Schöneberger, 2016) and multi-view stereopsis (Hirschmuller 2007, Rothermel et 
al. 2012) (SfM-MVS). SfM-MVS algorithms employ the same photogrammetric principles, but 
incorporate algorithms from the computer vision community. UAS-based SfM-MVS mapping is now 
commonly used for geoscience applications due to the relatively low cost, ability to rapidly mobilize to 
perform a survey, higher spatial resolution compared to satellite based methods, and the suitability for 
repeated mapping (Westoby 2012; Fonstad 2013). Just as in conventional photobathymetry, SfM-MVS 
bathymetry generally requires a posteriori refraction correction, as the underlying techniques were 
designed for subaerial (i.e., above-water), rather than subaqueous mapping. A few widely-used 
approaches to refraction correction from SfM-MVS bathymetry are: 1) processing data without 
accounting for refraction, and using a constant scale factor to correct depths (Woodget et al. 2015), 2) 
processing data without accounting for refraction, and estimating a mean depth correction for each point 
based on a refraction model (Dietrich 2017), 3) processing data with a bundle adjustment which does 
account for refraction in a multimedia bundle adjustment (Maas 2015; Kotowski 1988; Murase et al. 
2008; Mulsow et al. 2018 ) followed by a dense reconstruction which also accounts for refraction 
(Mandlburger 2019).  
 
Individually, both the radiometric approaches (i.e., SDB) and geometric approaches (stereo-
photogrammetry) have strengths and weaknesses. Fortunately, the geometric and radiometric approaches 
are highly complementary, such that the strengths of each can overcome the weaknesses of the other. 
Specifically, geometric approaches work well when the bottom is sufficiently textured to enable feature 
matching, whereas radiometric approaches tend to work well in areas of relatively homogeneous substrate 
and uniform water clarity. Recent work by Starek and Giessel (2017) demonstrated a step towards a 



hybrid approach to perform a UAS bathymetric inversion by using a SfM-MVS derived orthophoto 
regressed against in-situ depth measurements surveyed using GNSS.  
 
The aim of this study is to test a novel geometric-radiometric fusion method to map bathymetry using 
radiometric modeling of each image captured from a UAS, without the need for an in-situ survey. The 
results from the geometric processing (i.e., dense point cloud, camera exterior and interior orientations) 
are used to train a radiometric (i.e., spectrally-based) approach that estimates depths from multiple 
spectral bands. Four different radiometric methods are tested for the prediction, including a red, green, 
blue (RGB) lookup table, a log-ratio based approach (similar to a number of widely-used SDB 
algorithms), and two machine learning approaches using neural networks with different input feature sets. 
The results are tested using UAS imagery collected over a project site in the U.S. Virgin Islands (USVI) 
and compared against a bathymetric lidar dataset. The results show that for each of the radiometric 
models tested, the combined geometric-radiometric approach improves spatial coverage and reduces error 
(specifically, the 95th percentile error, determined by differencing the modeled bathymetry and reference 
bathymetry). 
 
This manuscript is organized as follows: Section 2 provides an overview of the geometric-radiometric 
methodology. A general overview of the methodology is included, with further details provided in the 
following subsections. Section 3 described the field site, experiment design, and reference dataset. 
Section 4 presents results from the methodology, which are then discussed in Section 5. Section 6 
summarizes the findings in a conclusion. 
 
2. Methods 

The geometric-radiometric methodology introduced here, and depicted in Figure 1, corrects bathymetric 
SfM-MVS data to account for refraction while simultaneously leveraging radiometric methods to provide 
continuous data, even in regions where SfM-MVS methods were unable to resolve depths. The first two 
steps, the acquisition of overlapping RGB imagery and processing of the data with SfM-MVS software, 
are considered as “pre-processing” steps for this study, and are not addressed in detail here. However, it is 
important to note that it is critical to collect high-quality imagery and to generate accurate results using 
SfM-MVS software. Detailed recommendations and procedures for completing Steps 1 and 2 can be 
found in the literature, notably Maas 2015, Mandlburger 2019, Slocum et al. 2020. Very briefly, it is 
important to use a UAS which utilizes real time kinematic (RTK) or post-processed kinematic (PPK) 
GNSS and to collect data under conditions of clear water, varying seafloor texture (i.e., not a 
homogeneous sandy bottom), low wave height, minimal relict foam from breaking waves, and minimal 
sun glint. Data for this study were processed using Agisoft PhotoScan, which has subsequently been 
renamed Metashape (Agisoft, 2018), with the alignment settings set to “high” and dense reconstruction 
setting also set to “high.”  

  



 

Figure 1. Geometric-radiometric workflow developed and tested in this study. 

The dense point cloud, camera exterior orientation, and camera interior orientation are computed in Step 
2. In Step 3, the point cloud is subsampled to ensure a uniform spatial distribution and the raw imagery is 
filtered to remove specular reflections using an intensity threshold. In Step 4, each point in the 
subsampled point cloud is projected into the camera image coordinates, and the red, green, and blue 
digital numbers are computed. Note that refraction is not accounted for here as the SfM-MVS processing 
in Step 2 did not account for refraction. The camera ISO, relative position from the camera to the point, 
time the image was acquired at, and pixel coordinates are also recorded. These variables comprise the 
independent variables used to train the radiometric model. The in-water slant range (IWSR), or distance 
of the underwater portion of the optical ray from the refraction corrected point to the water surface, is 
computed in Step 5 as the dependent variable for the radiometric model. The IWSR is computed using 
Snell’s law to refract the ray at the water surface and makes the simplifying assumption that there is no 
horizontal shift of the point (see further discussion below). The radiometric model is trained in Step 6. 
Note that a neural network is depicted in this subfigure, but four different radiometric models were tested 
for this step. In Step 7, the same independent variables that were computed in Step 4 are now computed 
for each pixel in image space. The radiometric model trained in Step 6 is used to estimate an IWSR for 
each pixel. In Step 8, the IWSR is converted to world coordinates by performing ray tracing and 
refracting the ray at the air water interface. Step 9 merges estimated depths from every camera into a 
combined DEM or point cloud. 



The results of the SfM-MVS processing in Step 2, as well as a mean water surface elevation estimated 
from a local tide gauge, were used to train a radiometry-based model which estimates the water depth 
based on the camera interior and exterior orientation and RGB values of each image. The radiometric 
model was used to estimate depths for every pixel in every image, resulting in final depth estimates, 
regardless of bottom texture. Four different models were tested, each using different methods, features, 
and levels of complexity. 

The data were first preprocessed to downsample the point cloud and remove specular solar reflections 
from the imagery. The subsampled point cloud was then projected into each of the images, and nine 
features were computed for each projection. Using the estimated water surface, the ray was then refracted 
at the water surface and the in-water slant range (IWSR), defined as the distance from the water surface to 
the predicted 3D point (based on the SfM-MVS results), was computed. A model was then trained, which 
predicts the IWSR as a function of the features computed in the previous step. Using this model, an IWSR 
value was computed for each pixel in each image. This IWSR was used to compute the world coordinates 
using the estimated water surface elevation and accounting for refraction at the air-water interface. This 
was performed for each image, and the data were combined and filtered to produce a final bathymetric 
point cloud and/or digital surface model. 

 
2.1 Subsample Point Cloud (Step 3a) 

The results from SfM-MVS processing often consist of a dense matching point cloud with tens of 
millions of points, which can be computationally expensive in further processing steps. In order to 
facilitate subsequent processing, in Step 3a, the point cloud was sub-sampled using the CloudCompare 
spatial subsampling tool, which ensures a minimum, specified separation of any two points in the output 
point cloud (CloudCompare, 2019). A value of 0.25 m was used as the minimum spacing between points 
in this research, yielding a point cloud with approximately 600,000 points, or 5% of the original points. 
Spatial filtering was selected, as opposed to random sampling, in an attempt to ensure that the data would 
be representative of the full variability of seafloor textures in the scene and not biased by regions of the 
point cloud with a higher point density. For this work, no outlier rejection was performed as a manual 
inspection of the point cloud data did not exhibit excessive noise. Additionally, as this dataset contained a 
portion of the area of interest (AOI) which was not underwater, data above the waterline were removed 
from the point cloud using an elevation threshold. These points above the water line were added back to 
the bathymetric data after processing to create a seamless topo-bathymetric surface. 

2.2 Image Filtering (Step 3b) 

Specular solar reflections (i.e., sun glint) and relict foam from small breaking waves were masked out of 
the raw imagery using an intensity-based filter. The RGB imagery was converted to the hue-saturation-
value (HSV) color space, and a simple threshold was used to create a mask identifying pixels which 
contain a “value” (on the HSV scale) greater than 60%. This value is a representation of pixel brightness, 
and, in this study, was able to identify the bright specular returns in both datasets. The mask was 
expanded by 5 pixels in all dimensions to account for artifacts in the pixel values surrounding sun glint 
pixels, likely due to bleeding of oversaturated pixels and chromatic aberration. 
 
The masked imagery was then convolved with a Gaussian smoothing kernel (σ = 5 pixels) to reduce any 
high-frequency noise in the imagery or artifacts from small-scale variability from ripples on the water 
surface. Artifacts on the edge of the imagery were minimized by padding the array values outside the 
image bounds with the nearest value in the image. Masked areas were omitted from the convolution, and 



future processing steps omitted computing features or estimating depths for these masked regions. 
Examples of the image filtering steps are shown in Figure 2. 
 

 
Figure 2. Specular reflections and bright, relict foam on the water surface are removed, then the image is 
smoothed with a Gaussian kernel. 

2.3 Project Points to Image Space (Step 4 & 5) 

Each point in the sub-sampled point cloud was projected into each image which captured that point within 
its field of view, and the following nine features were recorded: RGB digital numbers, image ISO, 
relative easting and northing from the camera to the point, pixel x and y coordinates, and time of image 
acquisition. Note that aperture and shutter speed were not included as they were held constant for the data 
acquisition. The nine features and the physical mechanism for potential ray-path induced variation in the 
RGB intensities are summarized in Table 1. The back projection of the points into the image plane did not 
incorporate any refraction at the air-water interface (Figure 3), since the SfM-MVS software used to 
generate the point cloud also did not account for refraction. The distance that the light travels from the 
point to the surface of the water is computed using a point with a refraction corrected depth. This 
refraction-corrected depth is computed using the same methodology as proposed in Dietrich, 2017, 
wherein it assumed that the horizontal translation of the point is negligible and the refraction of the light 
ray at the air water interface is computed using Snell’s law and assuming a flat water surface. A diagram 
depicting the computation of the IWSR is shown in Figure 3. Note that this IWSR distance does not 
account for the distance the light has traveled to initially get to the seafloor. This simplifying assumption 
is due to the lack of additional data regarding the light incident on the water surface (e.g., direct sunlight, 
diffuse skylight, and reflections from clouds, nearby wave facets, etc.). The significance of this 
assumption should be investigated in future work. 



 

Figure 3. Points are projected into each image plane, and the IWSR is computed by accounting for 
refraction at the air-water interface. 

 
Table 1. The nine features considered for use in a neural network. 

Feature Induced variation in perceived depth due to: 

RGB Pixel 
Digital Numbers 

The wavelength-dependent exponential attenuation of light in the water 
column (e.g., red attenuated more rapidly than blue) 

Image ISO Potentially-varying sensor gain of each image, and therefore image brightness 

ΔE, ΔN (camera 
to point) 

The incident angle dependence on light transmittance through the air water interface 
and the relative location of the sun inducing glare on the water surface 

Pixel x, Pixel y The lens artifacts causing portions of an image to be brighter than others (i.e. 
vignetting). Note that this could be omitted if the camera is pre-calibrated and 
corrected with a camera calibration.  

Time Temporally-varying environmental illumination, such as cloud cover or time of day. 
(Note: when used in conjunction with relative easting, northing and/or the pixel x, y 
coordinates, can theoretically identify images which experience cloud cover over 
only part of the image when using a complex model, such as a neural network. 
However, this parameter was found to be prone to overfitting of the data and should 
be used with caution.) 

 



2.4 Train Model (Step 6) 

The features described in Step 4 were used to train a model which was then used to predict the IWSR for 
every pixel in each image (Step 6). In this work, four different models were tested in this step, although 
any model which computes the IWSR as a function of these features could be used. The four different 
models were selected as a sampling of broad types of radiometric models and are not meant to represent 
all of the radiometric bathymetric models in the literature. 

2.4.1 Model 1: RGB Lookup Table 

The most simplistic model is an RGB lookup table, which assigns depth based on the mean of the values 
in the training dataset with the same color. This method utilizes a 3D lookup table, corresponding to the 
RGB channels of the imagery. Lookup tables have been used before for bathymetry retrieval from 
imagery, such as in Bowles et al. 2005. Imagery was acquired with variable ISO for this work, and was 
therefore normalized by dividing by the ISO value in order to convert the digital number recorded by the 
camera into a number that is more closely related to the number of photons received by the imaging 
sensor. Additionally, as this data was acquired in raw 14-bit format, the cell size of each bin in the 3D 
lookup table was set such that middle 99% of the normalized data in each channel was spread across 256 
bins. (Finer vertical discretization could be achieved by increasing the bit depth, but 8-bits was found to 
provide sufficient vertical resolution for the shallow depth ranges covered in our study site.) The top and 
bottom 0.5% of the data were omitted as outliers. For each bin in the lookup table corresponding to a 
normalized RGB triplet, the mean values of the IWSRs of the training data were computed. The same 
normalization and binning was performed for new data with unknown IWSR distances, and the mean of 
the training data IWSR distances are assigned to the corresponding values.  

2.4.2 Model 2: Ratio of Logs 

The second method, loosely based on a common SDB algorithm (Stumpf et al., 2003), involves a linear 
transformation of the ratio of the logs of two channels of imagery, using transformation coefficients 
derived from a linear regression of reference depths on the ratio-of-logs. The Stumpf algorithm is 
generally implemented on radiance values (obtained through a radiometric calibration that converts from 
raw DNs to at-sensor radiance) or surface reflectance, obtained via an atmospheric correction algorithm, 
such as ACOLITE (Caballero and Stumpf, 2020; Vanhellemont and Ruddick, 2016). However, since this 
study used consumer-grade cameras on commercially-available UAS, without available radiometric 
response curves, and with imagery acquired from low altitudes under stable illumination conditions, the 
algorithm was instead implemented on raw image band digital numbers (DNs), after experimentally 
confirming that the use of raw DNs did not eliminate the existence of a strong linear relationship between 
reference depths and the ratio-of-logs. Another difference between most implementations of the Stumpf 
algorithm and our approach is that, while blue (B) and green (G) channels are typically used, due to 
providing the greatest depth penetration, we used the blue (B) and red (R) image bands. The original 
algorithm (Stumpf et al., 2003) does allow for other band combinations, besides (R)  and (G), and, in this 
study, log(B)/log(R) was found to have a higher signal to noise ratio. The shallow (<4m) project site 
exhibited excellent water clarity, and the optical extinction of the red channel was not a concern. A linear 
fit was used to compute IWSR as a function of the ratio of the logs. Note that the assumption of a linear 
relationship may be negatively impacted by any strongly nonlinear response curve of the sensor, and is 
something that should be checked by anyone implementing our methods. For new data with unknown 
IWSRs, the ratio of the logs was computed, and the linear fit parameters were used to estimate the IWSR. 
 
2.4.3 Model 3: Neural Network 



The third method used a shallow neural network to train a regression model, which predicts the IWSR as 
a function of the input features. The neural network used for this work contained one hidden layer with 5 
nodes, used Levenberg-Marquardt backpropagation, and was programmed using the MATLAB Deep 
Learning toolbox. The choice of 5 nodes and one hidden layer was made after qualitatively evaluating 
more simplistic and more complex topologies. More complex topologies tended to over-fit the training 
data, resulting in outliers propagating into the radiometric depth estimations, while more simplistic 
topologies with only a few nodes produced inaccurate results. While this neural network topology worked 
well for these experiments, it was considered beyond the scope of the study to investigate whether it 
would hold across different project sites or data sets. A K-fold ensemble of 10 models was used to train 
the data, using an 80-10-10 split of the data (e.g., 80% training data, 10% validation data, 10% testing 
data), and the mean of the models was used as the estimate of the IWSR. Two neural networks were 
tested in this work; one used just the RGB, and ISO data, while the other used all of the nine of the 
features described in Section 2.3. 

2.5 Estimate Depth for Each Pixel in World Coordinates (Steps 7 & 8) 

For every pixel in every image, a ray was projected into real world coordinates using a forward projection 
to a known elevation of the water surface (i.e. raytracing of image ray with a constant elevation water 
surface model). The refracted angle at the air water interface is computed using Snell’s Law, with an 
estimated index of refraction of 1.00 and 1.34 for air and water, respectively. The IWSR is then projected 
through the water to real world coordinates. 

2.6 Combine All Data (Step 9) 

The point cloud depths of the same location on the seafloor varied between images (σ ~ 0.5 m), due to 
variability in the sea surface elevation and water surface normal vector due to waves, as is discussed in 
Fryer and Kniest (1985). Variability in the sea surface elevation produces perceived depths which are 
deeper or shallower than expected, due to variability in the true IWRD. Variability in the water surface 
normal vector results in horizontal and vertical positioning errors, due to the refraction at the air-water 
interface deviating from the predicted direction. These uncertainties were mitigated by computing a 
windowed average of the elevations in the final point cloud, which performed well, due to the overlapping 
imagery acquired for the SfM-MVS processing which ensured that each point on the seafloor was viewed 
multiple times from various angles. For this analysis, the final DEM was computed using a 10-cm cell 
size and computing a running average for the point cloud depths in each bin. Processing in this manner 
alleviated the need for storing the large point cloud in memory. 
 
2.7 Geometric-Only Refraction Corrected Point cloud 

A geometric-only point cloud is computed by correcting the SfM-MVS results using the methods 
described in Dietrich (2017). This point cloud is used to demonstrate the advantages of the geometric-
radiometric methodology. Briefly, the same process is performed for each point in the point cloud. For 
each camera which captures that point within the viewing frustrum, a ray from that point to each camera 
is computed. Each ray is refracted using Snell’s law, in the same way that is depicted in Figure 3 where 
horizontal translation of the point is assumed to be negligible, and a new estimated elevation is computed 
for each camera. The mean of these new elevations is used as the value for the corrected point cloud.    
 
3. Experiment Design 

The proposed methodology was assessed using data from two separate UAS missions on March 25, 2018, 
on the northwest end of Buck Island off of St Croix, USVI, USA. A custom UAS with a Sony A6300 
camera and a carrier phase recording, Piksi Multi GNSS receiver was used to acquire nadir, 14-bit raw 



imagery and raw GNSS observations at 10 Hz for SfM-MVS processing. Seven ground control points 
(GCPs) were surveyed with survey-grade (carrier-phase measuring, multi-constellation, multi-frequency 
receivers, paired with geodetic-quality antennas) GNSS and a 1” total station, and were used in the SfM-
MVS processing. A bathymetric lidar dataset was acquired four months after the fieldwork and was used 
as the independent ground truth dataset for this study. Further discussion regarding the validity of the 
bathymetric lidar as a ground truth dataset given this large time gap is included in in Sections 3.5.2 and 
5.4) 

3.1 Field Site 

The field site is approximately 300 m along-shore by 200 m cross-shore, as shown in Figure 4, with water 
depths of up to 4 m in the AOI. Approximately 20% of the field site encompasses the above-water 
topography of the northwest-facing, sandy beach. The beach is narrow (10-20 m) and backed by thick 
shrubs and hardwood trees farther inshore. The AOI is protected by an outer reef, and wave conditions 
were dominated by short period wind swell with amplitude less than 0.25 m. The seafloor is comprised of 
a variety of bottom types, including submerged coral, rock, seagrass, and sand. While water clarity was 
not directly measured, it was noted that the seafloor in water depths of greater than 10m was clearly 
visible in the areas surrounding the field site. The two missions were flown with a constant wind of 
approximately 15 mph (6.7 m/s) out of the NE between 4:45PM and 5:30PM local time, when the sun 
elevation ranged from 24° for the start of the first mission to 13° at the end of the last mission. There was 
intermittent cloud cover, which did affect the illumination of the field site during each of the missions. 
Buck Island and the surrounding waters are designated as a National Monument, and, therefore, all field 
work and UAS operations were performed with appropriate waivers, permits and certifications in a 
partnership with the United States National Park Service (NPS) and the National Oceanic and 
Atmospheric Administration (NOAA). 



 

Figure 4. The project field site, shown by the red box, is located on the NW corner of Buck Island on St 
Croix, USVI.  

3.2 UAS Specifications 

A custom UAS, shown in Figure 5, built upon a DJI S900 airframe, was utilized for these missions. The 
autopilot, a 3DR Pixhawk, was used to trigger a Sony A6300 Camera with a 30-mm fixed focal length 
lens in order to acquire 14-bit RAW 24Mp RGB imagery (6000x4000). The Sony A6300 camera was 
installed on a 3D printed mount, which maintained a roughly nadir orientation. The primary GNSS for 
navigation used positions computed from code-ranging, L1 only measurements using the broadcast 
ephemeris. For mapping purposes, a Piksi GNSS receiver recorded raw carrier phase measurements and 
the timestamp of each camera exposure, triggered by the external flash of the camera, with a positional 
accuracy of approximately 3 cm horizontal, and 5 cm vertical. The maximum flight duration with the 
payload was approximately 12 minutes. 



 

Figure 5. The S900 UAS used in this research. 

3.3 UAS Mission Parameters 

Two missions were flown over the same AOI at 100 m and 80 m altitudes and corresponding ground 
sampling distances of 13 mm and 10 mm, respectively. The 100 m mission acquired 154 images, while 
the 80 m mission acquired 252 images, with the flight lines depicted in Figure 6. Each mission required 
two flights and ~25 minutes to complete. The UAS was piloted manually for takeoff and landing, but 
flown in fully autonomous mode during mapping to capture imagery with 75% endlap and 75% sidelap at 
the water surface. Note that the effective endlap and sidelap on the seafloor increase with water depth. 
Missions were designed and monitored in real time via a 900MHz telemetry module using the Mission 
Planner software (Oborne, 2018). The Sony A6300 camera was set in manual mode, such that the shutter 
speed and aperture were fixed at 1/1000s and f/4, which acquired slightly underexposed imagery. In order 
to account for variability in illumination of the scene while ensuring the imagery was not overexposed, 
the ISO was set to auto-mode with an auto exposure value (EV) of -1. With these settings, the ISO ranged 
predominantly from 125 to 640, with a few images at ISO 800 and 1250 when clouds were present. 

 



 

Figure 6. The flight trajectories, shown in arbitrary along-shore, cross-shore rectangular coordinates. 

3.4 Ground Control Points 

In order to constrain the SfM-MVS processing, seven 1m x 1m checkerboard patterned GCPs made of 
flexible PVC material were placed along the beach. The GCPs were placed such that they were evenly 
distributed across the alongshore extents of the AOI, and placed to maximize the cross-shore variability. 
Note that GCPs were not placed at the positions closest to the water or less than 100 m in the alongshore 
position, due to site-specific constraints. These GCPs were surveyed using a Leica TS15P 1” total station 
with a 360° prism on a monopod to an estimated accuracy of 2 cm.  

3.5 Reference Data 

3.5.1 Surveying Methods 

A combination of total station, GNSS, and single-beam sonar was used to generate a reference 
bathymetric dataset and survey the GCPs. The reference data was only used to validate the ground truth 
bathymetric lidar dataset, while the GCPs were used in the SfM-MVS processing. All the data was 
converted to UTM Zone 20N (meters), NAD83 (2011) epoch 2010.00, with VIVD09 (Geoid 12B) 
orthometric heights. Two control points were occupied with static GNSS for over 2 hours each, and were 
processed with the NGS Online Positioning User Service (OPUS), once the precise ephemeris was 
available. The OPUS reported overall RMS for these points were 0.016 and 0.015 m. A Leica TS15P total 
station and a Leica 360° prism on a monopod were utilized to accurately measure all of the GCPs and 



survey shallow bathymetry transects in relation to the control points positioned in the Static GNSS 
survey. Sonar data was acquired using a Hydrolite-TM echosounder and a Trimble R8-2 GNSS receiver 
mounted onto a Hobie Mirage tandem kayak. A second Trimble R8-2 GNSS antenna was set up as a base 
on one of the control points on shore to provide RTK positioning. The data were acquired in multiple 
transects running approximately parallel to shore at a sampling rate of 1 Hz. 

3.5.2 Ground Truth  

Bathymetric lidar data were acquired for St. Croix by the U.S. Army Corps of Engineers (USACE)–Joint 
Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) on July 20, 2018, approximately 
four months after the UAS data acquisition, with a Teledyne Optech Coastal Zone Mapping and Imaging 
Lidar (CZMIL). The resultant point cloud contained an average data density of 6 pts/m2. 

The field site did not experience any major storms or large wave events in between the UAS data 
acquisition and the bathymetric lidar flight, though some erosion and accretion did occur along the beach. 
In order to assess the validity of using the bathymetric lidar data as a ground truth dataset for comparison 
with the UAS data throughout the AOI, the lidar data were compared to the reference data acquired at the 
time of the UAS survey. For each point in the reference dataset, the median elevation value from the lidar 
within a 1-m radius was used to compute the elevation difference. The comparison indicated a median 
difference of 12 cm between the lidar and the sonar and total station reference data for both topographic 
and bathymetric points, as shown in Figure 7. The 12-cm difference was subtracted from the lidar data so 
that it aligned with the reference data, as the reference data was used as ground control in the UAS 
processing. In general, the lidar data agrees well with the reference data, with 95% of the elevation 
differences (N=6764) fall between -0.22 m and 0.37 m (-0.34 m and 0.25 m after the 12-cm bias is 
removed). The spread of this distribution can be attributed to large gradients in elevation near the edges of 
the reef and near large coral heads and uncertainty in the surveyed reference dataset. There are outliers 
(greater than 0.5 m differences) near the shoreline (along-shore position 90 m - 140 m), which are 
attributed to areas of erosion and accretion in a few areas near the shoreline that occurred between the 
UAS survey and the lidar data acquisition. The implications of including this real erosion and accretion in 
the ground-truth dataset are discussed further in Section 5.4. Due to the substantially higher point density 
and greater coverage of the bathymetric lidar, it was ultimately selected as the ground-truth dataset to 
compare to the UAS depths. 



 

Figure 7. The elevation difference between the bathymetric lidar dataset and the reference dataset, which 
used a total station and single beam sonar, demonstrates generally good agreement. Note that the total 
station data are the approximately shore-normal transects close to the shoreline, while the longer 
tracklines (some roughly shore-parallel) are the sonar data.  

4. Results 

Data from the two UAS mapping missions were processed using the methodology described in Section 2. 
For comparison, the data were also processed using the “geometric-only” methodology, which includes 
only the SfM-MVS bathymetry, with the refraction correction performed as described in Section 2.7 

4.1 Geometric-Only Methods 

The SfM-MVS point cloud was corrected based on a known water elevation from a nearby tide station 
and the incident angle from each point to each camera which contains the point within the field of view 
(Dietrich, 2017). As this method strictly corrects the elevation values of the point cloud based on the 
viewing geometry and water surface, and does not leverage the radiometric information to fill data gaps, it 
is referred to as “geometric-only” in the results and discussion section. Figure 8 shows the results of the 
refraction corrected point cloud for each experiment. Note that for Experiment 2, which was flown at a 
lower altitude, the SfM-MVS processing was unable to resolve depths for a large portion of the AOI. The 
larger data gaps in Experiment 2 provided a good test case for investigating the potential to enhance 
spatial coverage with the combined geometric-radiometric method. 



 

Figure 8. Results of refraction corrected SfM-MVS data for Experiments 1 and 2. Both experiments 
produced results with data gaps over regions with a texture-less seafloor, though Experiment 2 produced 
much larger data gaps.  

4.2 Radiometric Method Comparison 

The geometric-radiometric methods using the four radiometric models described in Section 2.6 and the 
geometric-only method were all compared to the reference bathymetric lidar dataset. These methods and 
model names are summarized in Table 2. All data were gridded to a raster with 10-cm cell spacing. The 
reference data was gridded using a Delaunay triangulation-based TIN-to-grid approach, as the data were 
sparser, while the data from the radiometric and refraction correction methods were gridded using the 
average of the values within each grid cell. The DEMs were differenced, such that a positive value 
indicated a predicted depth that is too shallow when compared to the reference lidar data. Spatial plots of 
the elevation errors and a histogram of the distribution of errors for each method are shown for 
Experiments 1 and 2 in Figures 9 and 11 and Figures 10 and 12, respectively. Statistics for the errors of 
each method are reported in Tables 3-4. All of the error distributions were found to fail normality tests 
based on skewness and kurtosis, such that error statistics based on the assumption of Gaussian 
distributions could not be used. Therefore, we computed and reported the following test statistics: 1) the 
median, and 2) the 95th percentile error, computed following the recommendations and procedures 
outlined in American Society for Photogrammetry and Remote Sensing (ASPRS) guidelines for lidar 
vertical accuracy reporting, in the case that error distributions are non-Gaussian (ASPRS, 2004).  The 95th 



percentile error represents “where 95 percent of errors have absolute values that are equal to or smaller 
than the specified amount.” Additionally, the percentages of the data with errors of magnitude greater 
than 0.5 m and 1 m were computed as additional metrics for the width of the distributions. It is important 
to note in Tables 3-4 that the spatial coverage for the geometric-only processing method is defined 
relative to the coverage of the geometric-only method. In other words, the 100.0% coverage of the 
geometric-only method serves as a baseline for evaluating the increased coverage of the geometric-
radiometric methods. Finally, the processing times referenced in each of the tables are for a Windows 10 
Desktop PC with an Intel Xeon CPU (E5-1603 @ 2.80 GHz), GeForce GTX 980 graphics card (4 Gb), 
and 32 Gb of RAM. 

Table 2. The four models are compared to the geometric-only methodology method. 

Model Name Model Description 

Lookup Table Lookup table using normalized and histogram stretched R,G,B digital numbers 

LogRatio Linear fit to the ratio of the log(B)/log(R) 

NN(R,G,B,ISO) Shallow Neural Network trained with R, G, B, ISO (RGBi) values 

NN(All) Shallow Neural Network trained with (R, G, B, ISO, ΔE, ΔN, time, pixel x, pixel y) 

Geometric-only Point cloud refraction correction methodology proposed by Dietrich (2017) 

 

4.2.1 Experiment 1 Results 

 

Figure 9. Vertical errors (compared to ground truth lidar data) for each of the models applied to the data 
from Experiment 1. 



 

Figure 10. Histogram of depth errors for each of the models applied to the data from Experiment 1. 

Table 3. Results of each of the models applied to Experiment 1. 

Name 
Geometric-

Only  
  Lookup 

Table 
   

LogRatio 
   

NN(RGBi)     NN(all) 

Median (m) -0.04 -0.06 -0.10 -0.06 -0.06 

95th percentile error (m) 0.62 0.39 0.56 0.37 0.37 
|Depth Error| > 1m 1.7% 0.2% 0.3% 0.1% 0.1% 

|Depth Error| > 0.5m 7.4% 2.7% 7.5% 2.0% 2.3% 
Coverage Relative to 
Geometric-only +21% +21% +21% +21% 
Time to train model 
(HH:MM:SS) n/a 0:00:21 0:00:01 1:46:29 0:56:36 
Time to apply model 
(HH:MM:SS) n/a 1:06:47 1:06:30 2:10:29 3:32:12 
Total time (HH:MM:SS) n/a 1:23:31 1:22:52 4:13:24 4:36:21 
 

  



4.2.2 Experiment 2 Results 

 

Figure 11. Vertical errors (compared to ground truth lidar data) for each of the models applied to the data 
from Experiment 2. 

  

 

Figure 12. Histogram of depth errors for each model applied to Experiment 2. 

  



Table 4. Results of each of the models applied to Experiment 2. 

Name 
Geometric-

Only  
  Lookup 

Table     LogRatio 
   

NN(RGBi)     NN(all) 

Median (m) -0.02 -0.02 -0.04 -0.02 -0.03 
95th percentile error (m)  0.77 0.47 0.54 0.39 0.43 

|Depth Error| > 1m 2.5% 0.4% 0.3% 0.1% 0.1% 

|Depth Error| > 0.5m 12.1% 4.5% 6.6% 2.6% 3.4% 
Coverage Relative to 
Geometric-only +61% +61% +61% +61% 
Time to train model 
(HH:MM:SS) n/a 0:00:21 0:00:01 1:46:29 0:56:36 
Time to apply model 
(HH:MM:SS) n/a 1:06:47 1:06:30 2:10:29 3:32:12 

Total time (HH:MM:SS) n/a 1:23:31 1:22:52 4:13:24 4:36:21 
 

5. Discussion 

All of the four radiometric models processed with the geometric-radiometric methods increased the 
coverage of resolved depths, produced a lower percentage of large errors (except the ratio of logs model), 
and had a lower 95th percentile error than the geometric-only method. 

5.1 Increased Coverage 

The coverage in which depths were resolved was increased using the geometric-radiometric methods 
when compared to the geometric-only method: by 21% and 61% for all of the radiometric models in 
Experiments 1 and 2, respectively. The geometric-only method produced no data in regions with 
insufficient seafloor texture and poor viewing geometry at the edges of the AOI. The geometric-
radiometric method, however, was able to resolve depths in these regions, as depth can be estimated 
regardless of viewing geometry and seafloor texture. The 30-cm wide transect shown in Figure 13 
demonstrates the advantage of the geometric-radiometric method using the neural network trained on the 
RGB and ISO when compared to the geometric-only method. Note that the vertical datum for this figure 
is adjusted so that the water level is at 0 m elevation. Data from both methods have been filtered by 
computing the mean elevation in 1-cm grid cells (approximately equal to the ground sample distance of 
the imagery) in order to remove the noise discussed in Section 2.7. 



 

Figure 13. A 30 cm wide transect demonstrates the increased coverage and accuracy of the geometric-
radiometric method across a texture-less seafloor. Both the geometric-only and geometric-radiometric 
data are filtered by computing the average of 1cm bins in the down-line distance.  

5.2 Increased Accuracy 

As shown in Tables 3 and 4, all of the radiometric models used in the geometric-radiometric method 
resolved depths with a smaller 95th percentile error than the geometric-only method. Large errors in the 
geometric-only methods were generally observed in regions with poor texture, where spurious 
correlations between images adversely affected the SfM-MVS processing. The median between the 
geometric-only and the geometric-radiometric models varied only slightly between the models, with most 
differences less than or equal to 3 cm. The log-ratio method in experiment 1, which performed relatively 
poorly, was the lone outlier with a median depth estimate 2-6 cm deeper than the geometric-only method. 
Figure 13 demonstrates the improved performance of the geometric-radiometric method in these texture-
less regions at 15 m and 130 m in the down-line distance.  
 
Note that there are relatively large vertical errors at the edges of the coral reef, depicted in Figures 9 and 
11, as well as in Figure 13 at ~115m down-line distance. This error exists in the geometric-only point 
cloud and the UAS data is shallower regardless of slope aspect, indicating that it is not due to horizontal 
uncertainty in the reference data. This error is likely due to either: 1) biases in the refraction correction or 
2) uncertainty from the gridded bathymetric lidar being used as the ground truth. Future work will be 
performed with a more rigorous ground truth dataset to disambiguate these potential error sources.  
 
5.3 Comparison of Models 

While the previous section presented the quantitative results of testing the different methods, the analysis 
performed in this study also enabled a more qualitative assessment of the four different radiometric 
models, based on the user’s experience in implementing and running them. A summary of the main 
findings is presented here. 



The lookup table yielded fast and accurate results, though it produced a slightly higher number of large 
errors when compared to the other methods. While it was not the case for these experiments, the lookup 
table method is unable to estimate a depth for a color which is not represented in the training dataset and 
is, therefore, a poor choice when there is a small training dataset. The log ratio method was fast, but it was 
consistently the least accurate of the methods. One possible explanation is the lack of robustness to 
varying illumination of the scene, as is evident in by the visible seam in the spatial elevation error results 
shown in Figure 9. While this method performed poorly in this experiment, it may prove more 
advantageous in an experiment where a scene has a minimal training dataset, as the extrapolation and 
interpolation of data for this model is well-documented in the literature. Both neural network methods 
were accurate, but took approximately three times longer in total processing time. The accuracy of the 
interpolation and extrapolation of values which are not present in the training dataset may be unstable due 
to the nature of neural networks, and should be investigated in future studies. The neural network with all 
of the features was prone to overfitting the training data, as evidenced by the results at approximately 
30 m in the along-shore position and 120 m in the cross-shore position in Figure 11. The geometric-only 
results are biased deep in this area, causing the neural network with all of the features to generate results 
that were also too deep in that region. 

 
5.4 Shore-Adjacent Errors 
 
A comparison between the reference data and the lidar data in Section 4 suggested that nearshore 
erosion/accretion may have occurred in some regions. A comparison between orthophotos generated from 
imagery acquired coincident with the lidar acquisition and from the UAS data suggests that erosion and 
accretion occurred near the shoreline between the two surveys in a few areas, as shown in Figure 14. The 
geometric-only and geometric-radiometric methods both exhibited high elevation errors near the shoreline 
throughout the AOI where there was: a) active wave breaking and a more variable water surface profile; 
b) sand changing colors and texture due to wave run-up wetting and drying the beach; and/or c) potential 
for suspended sediment in the water column. Determination of the extent to which these factors impact 
the results is complicated by the challenges in decoupling SfM-induced error from real erosion and 
accretion. We chose not to mask out the data in this region because: 1) it is of interest to investigate how 
well the different models work in these very shallow regions adjacent to the shoreline where no erosion 
and accretion have occurred, and 2) the decision of where to mask is highly subjective, and masking all of 
the data in the nearshore with large errors could artificially improve the reported results.  
 
  



 

Figure 14. Clear patterns of erosion and accretion occurred between the time of the UAS experiments and 
the acquisition of the ground truth lidar dataset. Perceived errors in this nearshore region is, in part, due to 
this real change. 

6. Conclusion 

This study has demonstrated a novel strategy for combining geometric and radiometric methods of 
bathymetry retrieval from UAS imagery, with the geometric method consisting of a refraction-corrected 
SfM-MVS workflow and the radiometric method consisting of multiple spectrally-based depth retrieval 
(SDB) algorithms. An important finding is that the combination of the two types of approaches greatly 
increases bathymetric coverage over what is obtained using only the geometric approach. This is 
primarily due to the fact that the radiometric approaches can estimate depths in homogeneous, featureless 
areas where the feature matching component of the geometric (SfM-based) methods tends to fail, and also 
near the edges of the AOI where stereo coverage is reduced. In this study, the increase in coverage was 
found to be 21% in the first experiment and 61% in the second. Another key finding was that the 
combined geometric-radiometric approach not only increased coverage, but also accuracy. Comparisons 
against reference data showed that the 95th percentile error improved (i.e., decreased) by up to 40% in the 
first experiment and up to 49% in the second. These results confirm the complementary nature of the 
geometric and radiometric approaches and demonstrate the types of improvements that are achievable 
through their combination.  

While somewhat outside the main objective of the study, ancillary results included the findings of 
comparing four different radiometric depth retrieval models in the overall geometric-radiometric 
workflow. These methods included a lookup table, the ratio of logs of two image bands, a shallow neural 
network trained with RGB and ISO, and a shallow neural network trained using the RGB, ISO, time of 
image, delta Easting and Northing, and pixel x and y. The shallow neural network trained on the R, G, B 
and ISO generally provided consistently good results and is recommended for most cases where 
processing time is not an issue. Importantly, the overall radiometric-geometric approach presented here is 



not limited to any particular spectral depth retrieval algorithm, or even to any one particular class of 
algorithm. The four methods used in this work were merely a representative sampling of available, 
published approaches, and future work to test additional algorithms in this step is recommended. 

One limitation of this approach is that the initial SfM-MVS processing needs to compute accurate depths, 
camera interior orientation, and camera exterior orientations in order for the radiometric model to be 
trained and utilized. In both experiments presented here, the SfM-MVS results were found to be sufficient 
to enable an accurate radiometric model and resultant depth estimates. Additionally, the initial SfM-MVS 
processing results for both experiments resolved depths across all of the various bottom types within the 
AOI. For example, the study site in this work contained small patches of sand, which were able to be 
resolved through SfM-MVS processing, as the coral or other features near the sandy patches provided 
enough texture to produce a valid (albeit sometimes noisy) depth. This enabled the models to “learn” 
what the radiometric signature of each seafloor substrate would be in a variety of water depths. The 
ability of these models to extrapolate and predict depths for substrates which were not resolved through 
the initial SfM-MVS processing and therefore do not exist in the training dataset should be investigated in 
future work.  

Another important point is that the radiometric models tested in this study are likely sensitive to changing 
illumination, camera settings and water clarity. Therefore, follow-on work is recommended to investigate 
the stability of the model parameters across a wider range of project sites and with varying environmental 
conditions. In particular, it would be of interest to incorporate sites with a wide range of wave conditions 
and both coastal and inland water types. Incorporating the results of these recommended follow-on 
studies, the geometric-radiometric bathymetric mapping workflow developed and tested in this work is 
anticipated to provide a valuable tool for filling shallow-water data voids in many regions around the 
world, using a cost-effective, UAS-based approach. 
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